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[1] The thermal boundary layer at the surface of a volcanic lava dome is investigated
through a continuum model of the thermodynamic advection-diffusion processes resulting
from magmatic gas flow through the dome matrix. The magmatic gas mass flux,
porosity, and permeability of the rock are identified as key parameters. New, theoretical,
nonlinear steady state thermal profiles are reported, which give a realistic surface
temperature of 210�C for a region of lava dome surface through which a gas flux of 3.5 �
10�3 kg s�1 m�2 passes. This contrasts favorably with earlier purely diffusive thermal
models, which cool too quickly. Results are presented for time-dependent perturbations of
the steady states as a response to changes in surface pressure, a sudden rockfall from the
lava dome surface, and a change in the magmatic gas mass flux at depth. Together
with a generalized analysis using the method of multiple scales, this identifies two
characteristic timescales associated with the thermal evolution of a dome carapace: a short
timescale of several minutes, over which the magmatic gas mass flux, density, and
pressure change to a new quasi-steady state and a longer timescale of several days, over
which the thermal profile changes to a new equilibrium distribution. Over the longer
timescale, the dynamic properties of the dome continue to evolve, but only in slavish
response to the ongoing temperature evolution. In light of this timescale separation, the
use of surface temperature measurements to infer changes in the magmatic gas flux for use
in volcanic hazard prediction is discussed.
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1. Introduction

[2] Lava domes are steep-sided, mounds of lava, formed
by extrusion of highly viscous lava from volcanic vents.
Their rheology is due to the high silica content of the source
magma; typically dacitic, rhyolitic, or andesitic volcanoes
located in subduction settings. There are two main styles of
lava dome growth: endogenous and exogenous. An endog-
enous dome forms by internal emplacement of magma at the
base of the dome from the magma conduit below. It has a
layered internal structure. In exogenous dome growth, fresh
magma forces its way to the surface, leading to surface
features such as spines and lobes. Dome growth can switch
between these two styles on the same volcano, e.g., at
Unzen [Nakada et al., 1995] and Soufrière Hills Volcano
[Watts et al., 2002].
[3] As magma ascends in the conduit, its depressurization

leads to the exsolution of dissolved volatiles and the
production of magmatic gas. These gases form bubbles,

and lead to degassing-induced crystallization and an in-
crease in viscosity [Sparks, 1997]. The bubbles can also
form interconnected pathways through the lava, making it
permeable to gas flow. An internal gas pressure gradient
drives the gas upward through the conduit and the dome
above, which then escapes into the atmosphere. Heat
advection by this gas provides an important mechanism of
heat transfer within a dome, in addition to diffusion.
[4] Lava domes have several associated hazards. Under

certain circumstances, the high internal pressures can lead to
failure, resulting in explosions, dome collapse and pyro-
clastic flows [Fink and Kieffer, 1993; Calder et al., 2002].
The overpressures that lead to these failures can be triggered
by sudden increases in magmatic gas flux [Sparks, 1997].
Collapse can also be triggered by gravitational instability if
a dome outgrows the confines of the volcano summit and if
it cannot be supported by the flanking talus slopes [Sato et
al., 1992]. External triggers can also lead to hazardous
volcanic activity [Neuberg, 2000]. In particular, intense
rainfall has been shown to initiate explosions, dome collap-
ses and pyroclastic flows [Mastin, 1994; Yamasato et al.,
1998; Matthews et al., 2002; Carn et al., 2004; Barclay et
al., 2006]. Hence an understanding of the internal structure
of a dome and the conditions that can lead to failure are
important from a natural hazards perspective.
[5] Due to the hostile conditions around active lava

domes, basic physical parameters are difficult to measure.
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Blackbody surface temperatures of around 200–350�C
have been inferred from measurements of the infrared
radiation emitted from a dome surface [Dzurisin et al.,
1990; Oppenheimer et al., 1993; Urai, 2000]. Surface
rockfalls expose hotter rock immediately below. Similarly
observations of incandescence, lead to estimated temper-
atures near 650�C at a depth of approximately one metro
[Sparks et al., 2000; Watts et al., 2002]. The temperature
increases further with depth within a surface carapace layer,
with a typical thickness of 10–30 m [Iverson, 1990]. Below
this, the temperature is expected to be isothermal from theo-
retical considerations [Melnik and Sparks, 1999] with a
value near 830�C [Barclay et al., 1998].
[6] The total volume of a dome can be measured by

photogrammetric-GPS techniques, and the growth rate in-
ferred [Herd et al., 2005]. The composition and mass flux of
magmatic gases emitted from the dome surface can be
detected by remote spectroscopic techniques [Francis et al.,
2000; Edmonds et al., 2001]. Additionally, chemical compo-
sition and bulk physical properties of field specimens of dome
rock can bemeasured in the laboratory. These include density,
specific heat capacity, thermal conductivity, porosity and
permeability [Sigurdsson, 2000; Spera, 2000; Couch et al.,
2001]. In summary, many key parameters of volcanic domes
are known incompletely, and with large error bounds. Several
of these parameters, such as surface temperature and mag-
matic gas flux, also exhibit considerable natural variability,
both temporally and spatially over a dome.
[7] Models of dome growth and evolution should predict

parameter values that fall within the range of these obser-
vations. For example, in a one-dimensional model of the
flow of magmatic gas through a lava dome, Woods et al.
[2002] calculated the steady state profiles of gas pressure as
a function of depth within a permeable dome. Woods et al.
[2002] predict realistic pressure profiles within a dome,
below the carapace region. However, their model was
assumed to be isothermal and neglected the role of the
thermal boundary layer upon the pressure profile. One-
dimensional models of the thermal structure of an imper-
meable lava dome have been considered by Matthews and
Barclay [2004]. As there was no advection of heat by
magmatic gases, the only mechanism for vertical heat flow
in the interior was diffusion. This led to unrealistically rapid
cooling and low surface temperatures.
[8] Several models of lava dome growth have also been

proposed, employing either asymptotic studies exploiting
the typical small aspect ratio of dome height to horizontal
extent [Balmforth et al., 2000, 2004; Dragoni et al., 2005]
or numerical simulations using the finite element level set
method [Hale and Wadge, 2003; Bourgouin et al., 2007;
Hale et al., 2007]. These models were successful in gener-
ating realistic dome geometries and free surface evolution
for endogenous growth. However, these models were either
isothermal or, in cases where temperature was allowed to
vary, the only heat transfer mechanism was thermal diffu-
sion in the dome matrix. As a consequence, they did not
simulate realistic thermal profiles. Again, this is likely to be
due to the assumption of an impermeable dome and the
omission of a magmatic gas flux and its associated heat
advection.
[9] In this paper, we build on previous modeling studies

of energy fluxes through a volcanic dome. We develop a

model that includes both the diffusion of heat in the dome
carapace, and the advection of heat by magmatic gas flow
through the surface carapace layer of a permeable dome.
Together with a parameterization of energy fluxes at the
dome surface, the model then generates steady state surface
temperatures, and temperature and pressure profiles within a
dome, in good agreement with observations. For example,
in a region of the lava dome surface through which a gas
mass flux of 3.5 � 10�3 kg s�1 m�2 passes, the predicted
steady state surface temperature is 210�C. To investigate the
stability of a dome to external forcing, the steady state
temperature and pressure solutions can then be subjected to a
range of time-dependent perturbations. These could include:
[10] 1. a change in surface pressure due to the passage of

a weather system;
[11] 2. removal of surface material due to rockfall;
[12] 3. a change in the flux of magmatic gas at depth;
[13] 4. the impact of rainfall on the surface of a dome.
[14] Perturbations 1–3 will be examined during the

course of this paper, and their implications for lava dome
failure discussed. For each perturbation, the time-dependent
evolution of the lava dome temperature, and the magmatic
gas pressure, density and volume flux profiles will be
investigated. The model reveals a characteristic timescale
separation between the thermal response of the lava dome
and the dynamic response of the magmatic gas. This is
investigated further using the technique of multiple-scale
analysis. Perturbations to volcanic domes by rainfall (num-
ber 4 in the list above) have been shown in previous
modeling studies to lead to instability and failure [Matthews
and Barclay, 2004; Elsworth et al., 2004; Simmons et al.,
2004; Taron et al., 2007]. The response to rainfall of the
volcanic dome model developed here will form the basis of
a subsequent paper.

2. Development of a Model for a Gas-Permeable
Lava Dome

[15] In this section, we develop a thermodynamic model
of the temperature evolution of a lava dome carapace,
combined with the magmatic gas flow.

2.1. Assumptions

[16] We consider an idealized lava dome consisting of a
porous rock matrix (hereafter referred to as ‘‘matrix’’)
whose physical properties correspond to those of a typical
andesite. The void spaces, which incorporate both the
effects of cracks and vesicles are assumed to be isotropically
distributed. The porous medium is assumed to be rigid,
while magmatic gas is forced upward through the connected
void spaces.
[17] Two key properties in any model for porous media

flow are the porosity (the proportion of the lava dome which
is not occupied by andesite) and the permeability of the
andesite which is a measure of the ease of gas flow through
the pore spaces and fracture network. [Melnik and Sparks,
2002] report laboratory measurements of porosity and
permeability for a range of andesite samples from the
Soufrière Hills Volcano. These range from a porosity of
0.023 and a permeability of 6 � 10�16 m2 for dense
‘‘glassy’’ fragments to a porosity of 0.72 porous and a
permeability of 4 � 10�12 m2 for pumice. In the absence of
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detailed information regarding the composition and struc-
ture of the dome it is difficult to estimate bulk properties
from these measurements. The range of permissible perme-
ability values used in our investigations is further limited by
the requirement that the magmastatic gas pressure cannot
dramatically exceed the magmastatic overburden pressure
for extended periods of time. Costa [2006] fitted the
classical Kozeny-Carman relationship it these samples and
in general the complicated lava dome evolution will pro-
duce large spatial inhomogeneities in both porosity and
permeability. However, for simplicity and following the
earlier work of Woods et al. [2002], we shall assume
homogeneous distributions of porosity and permeability.
These can be interpreted as either global averages over
the whole dome or localized representations of the features
and regions making up the dome. The values of the physical
properties of andesite are given in Table 1.
[18] The matrix and the magmatic gas passing through the

void spaces are assumed to be in local thermal equilibrium,
which means that at any point they share one common
temperature. This allows the conservation of energy within
both the matrix and the magmatic gas to be written as a
single equation. Energy is transferred through the solid
carapace of the lava dome by a combination of diffusion
in the matrix and magmatic gas, and advection of the
magmatic gas. The composition of a sample of magmatic
gas from the Soufrière Hills Volcano was shown to be in
excess of 90% water by volume [Hammouya et al., 1998].
For simplicity, we assume that the thermal conductivity,
specific heat capacity and viscosity of the magmatic gas take
the same values as the equivalent properties of water vapor.
The values of these physical properties are given in Table 2.
[19] Typical dome structures are approximately isothermal

below a surface carapace region of approximately 30 m
thickness [Iverson, 1990]. In the model developed the
temperature at the base of the carapace region is maintained
at 1100 K (the temperature of fresh magma extrusion from
the conduit [Barclay et al., 1998]), but the behavior of the
model is insensitive to the position of this interface.
[20] The total magmatic gas flux can be estimated from

measurements of the sulfur dioxide (SO2) gas flux. This is
highly variable on many timescales. Typical values at the
Soufrière Hills Volcano lie in the range 0.1–50 kg s�1

[Edmonds et al., 2003a, 2003b]. The mixing ratio of SO2 in
magmatic gas is approximately 15:1, hence the total mag-
matic gas flux lies in the range 1.5–750 kg s�1. The surface
area of the Soufrière Hills Volcano dome is approximately
5 � 105 m2 [Carn et al., 2004], giving an average mass flux
per unit area of up to 1.5 � 10�3 kg s�1 m�2. However, the

emission of magmatic gas is not uniformly distributed over
the surface of a dome, with cracks and fissures in the
structure of a dome matrix acting to channel above-average
magmatic gas fluxes to certain regions of a dome, while
large regions of the dome periphery may have little or no
magmatic gas passing through them. Our contention is that
the flux of heat resulting from the advection of magmatic
gas is vital in describing the thermal structure of a dome,
and therefore in order to generate lava dome surface
temperatures corresponding to the maximum values
recorded in the literature, it makes sense to consider the
thermal structure of regions of small horizontal extent, but
through which a magmatic gas flux, perhaps an order of
magnitude above the background average may flow.

2.2. Derivation of Model Equations

[21] We consider a system of one-dimensional conserva-
tion laws describing the flow of energy, mass, and momen-
tum in the direction along the outward normal to the lava
dome surface and at an angle a to gravity. This is the ~z axis
where ~z = 0 is at the dome surface, the atmosphere above
the dome is in the region ~z > 0 and the dome itself is in the
region ~z < 0. The lower boundary of the model is at ~z = �L
for some positive constant L (as shown in Figure 1). This
system connects the behavior of the solid dome matrix
phase (whose properties are represented by a subscript r for
‘‘rock’’) to the properties of the magmatic gas (whose
properties are represented by subscript g for ‘‘gas’’).
[22] In the model equations variables with a tilde (�) are

dimensional quantities, variables with a caret (^) are non-
dimensional quantities and symbols with neither a tilde nor
a caret are dimensional, physical constants. The porosity (f)
and density (rr) of the matrix are assumed to be constant,
while the density (~rg) and volume flux per unit cross-
sectional area of void space, or equivalently the average
flow speed of magmatic gas (~vg) vary. Under these assump-
tions, conservation of energy allows us to write an equation
governing the combined rock matrix and magmatic gas
temperature ~T , itself a function of the level ~z and time ~t,
in the form

@

@~t
1� fð Þcrrr þ fcg~rg

n o
~T

h i

þ @

@~z
fcg~rg~vg ~T

� �
� @

@~z
ke
@~T

@~z

� �
¼ 0; ð1Þ

where the specific heat capacities of the matrix and
magmatic gases are cr and cg, respectively. The effective
thermal conductivity ke, is assumed to satisfy the parallel
model ke = (1 � f)kr + fkg, with kr and kg being the thermal
conductivities of the andesite and magmatic gas phases,
respectively. The effective thermal conductivity allows us to
combine the thermal diffusion in andesite and magmatic gas

Table 1. Typical Physical Properties of Andesite Used in the

Model

Property Value

kr thermal conductivity 2.6 W m�1 K�1

cr specific heat capacity 1000 J kg�1 K�1

rr density 2600 kg m�3

f porosity 0.2
K permeability 10�11 m2

Table 2. Typical Physical Properties of Magmatic Gas Used in the

Model (Based on Physical Properties of Water Vapor)

Property Value

kg thermal conductivity 0.016 W m�1 K�1

cg specific heat capacity 2026 J kg�1 K�1

mg viscosity 2.82 � 10�4 Pa s
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into one term. For an isotropic porosity distribution and
constant thermal conductivities, the effective thermal
conductivity and the first derivative of the final term in
equation (1) can be interchanged. The second term in
equation (1) corresponds to thermal advection in the
magmatic gas.
[23] Mass conservation of magmatic gas rising up

through the permeable matrix is governed by

f
@~rg
@~t

þ f
@

@~z
~rg~vg

� �
¼ 0: ð2Þ

Conservation of momentum for the magmatic gas occupy-
ing the void spaces of the porous medium is assumed to be
given by Darcy’s law which relates the volume flux to the
pressure gradient in the magmatic gas. If the total pressure
in the magmatic gas is ~pg, then

~vg ¼ � K
fmg

@~pg
@~z

þ ~rgg cosa
� �

; ð3Þ

where the constant of proportionality between the volume
flux and pressure gradient includes the andesite perme-

ability K, the porosity f, and the viscosity mg of the
magmatic gas. The second term on the right-hand side of
equation (3) is the correction due to gravity with g
representing the acceleration due to gravity and a the angle
between the vertical and the normal to the lava dome
surface (Figure 1). This system of governing equations
becomes closed with an equation of state for the magmatic
gas. Magmatic gas is assumed to behave like an ideal gas
and is governed by

~pg ¼ ~rgRg
~T ; ð4Þ

where Rg = 461.5 J kg�1 K�1 is the ideal gas constant for
water vapor.

2.3. Boundary Conditions

[24] To complete this system of equations, we need
boundary conditions at the surface (~z = 0) and at some
fixed level (~z = �L) inside the lava dome. At the dome
surface the difference between the surface temperature ~Ts(t) =
~T (~z = 0, t) and the temperature of the atmosphere Ta generates
a flux of heat away from the volcano which is a combination
of radiative and convective (sensible) components [Neri,
1998; Carn et al., 2004]

�ke
@~T

@~z

				
~z¼0

¼ �ss ~T4
s � T4

a


 �
þ ShracaU ~Ts � Ta


 �
; ð5Þ

where in the radiative heat flux term �s = 0.95 is the
emissivity of the andesite, s = 5.67 � 10�8 W m�2 K�4 is
the Stefan-Boltzmann constant and in the convective heat
flux term Sh = 2.0 � 10�3 is the surface roughness or the
aerodynamic transfer coefficient, ra = 1.0 kg m�3 is the
atmospheric density, ca = 1004 J kg�1 K�1 is the specific
heat capacity of the air and U is the wind speed over the
surface of the volcano. In this equation the diffusion of
thermal energy up through the matrix and magmatic gas is
balanced by the radiative transfer of energy to and from the
atmosphere, and a sensible heat flux (atmospheric convec-
tion due to wind across the lava dome surface).
[25] Heat is advected upward the dome by the magmatic

gas flux. Hence there is also an advective gas flux away
from the lava dome surface as heat is carried by the
escaping magmatic gas [Carn et al., 2004]. This term could
be included on the right-hand side of equation (5). However,
in the lava dome interior there is also an advective heat flux
to the surface in the magmatic gas. This term would be
written on the left-hand side of equation (5). The mass of
magmatic gas crossing the lava dome surface is conserved,
and the temperature of the magmatic gas is continuous
across the interface. Hence the advective heat flux due to the
magmatic gas escaping from the surface is equal to the heat
flux from below, and these two advective heat fluxes cancel
(see Figure 1). This means that the advection of heat by
magmatic gases does not contribute directly to the surface
energy balance. However, it has a direct impact on the
interior temperature profile, which then governs the sur-
face temperature, and the loss of energy to the atmosphere
via the radiative and convective (sensible) heat fluxes in
equation (5).

Figure 1. Schematic diagram showing diffusive heat
fluxes in the dome matrix and magmatic gas and advective
heat fluxes in the magmatic gas in a dome interior. Surface
heat fluxes are due to radiation, atmospheric convection,
and magmatic gas advection. All heat fluxes are assumed to
be perpendicular to the lava dome surface and at an angle a
to the vertical direction.
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[26] Boundary conditions are also required at the bottom
of the carapace region. At a level ~z = �L (the bottom of
the rigid carapace), the temperature is maintained at ~T (~z =
�L, t) = 1100 K, the andesite temperature at depth inferred
by Barclay et al. [1998]. Additionally, further conditions
on density are required at ~z = �L. In the steady state
model the mass flux is constant and in the time-dependent
model the density gradient is constant (with the exception
of the investigation into the forced mass flux variation at
depth).

2.4. Nondimensionalization of Model Equations

[27] To assist analysis of this model it is first nondimen-
sionalized. The thermal boundary layer is assumed to have
thickness L and this is used to nondimensionalize the length
scales in the model, with the nondimensional (careted)
spatial coordinate ẑ satisfying ẑ = ~z/L. The advective
timescale for the magmatic gas flux is used to nondimen-
sionalize time. The nondimensional timescale t̂ is

t̂ ¼ vg
� 


~t=L; ð6Þ

where [vg] is a typical value for the magmatic gas mass flux.
Properties of the magmatic gas and the lava dome
temperature vary across the thermal boundary layer. This
motivates nondimensional forms for magmatic gas pressure
(p̂g), density (r̂g) and temperature (T̂ ) which are related to
their dimensional counterparts through

~pg ¼ pa þ pg
� 


p̂g; ð7Þ

~T ¼ Ta þ T½ �T̂ ; ð8Þ

~rg ¼ rga þ rg
h i

r̂g; ð9Þ

where the dimensional scale for pressure [pg] is the difference
between the atmospheric pressure pa = 9 � 105 Pa at the
surface and the pressure at level ~z = �L necessary to drive a
mass flux per unit cross-sectional area of mg through a
dome. Similarly, the dimensional scale for temperature [T] =
802 K is the difference between the atmospheric tempera-
ture Ta = 298 K and the temperature at level ~z = �L, which
is ~T (~z = �L, t) = 1100 K. The dimensional scale for the
magmatic gas density [rg], is the difference in magmatic gas
density as a parcel of magmatic gas is moved from ~z = �L
to the surface, where it is subjected to atmospheric pressure
and temperature. With this scaling for the magmatic gas
density, the ideal gas equation defines rga through

rga ¼
pa

RgTa
: ð10Þ

Similarly, the ideal gas equation can be used to relate the
dimensional scales themselves through

pg
� 


¼ rg
h i

Rg T½ �; ð11Þ

This means the nondimensional ideal gas equation has the
form

p̂g ¼ Qr̂g þ dT̂ þ r̂gT̂ ; ð12Þ

where

Q ¼ Ta

T½ � ¼ 0:372; ð13Þ

d ¼
rga
rg
h i ¼ 3:34: ð14Þ

[28] As well as choosing the temperature scale across the
thermal boundary layer it is convenient to specify the mass
flux of magmatic gas across the thermal boundary layer

mg ¼ f rg
h i

vg
� 


¼
K pg
� 
2

mgLRg T½ � ; ð15Þ

where ~vg = [vg]v̂g and [vg] = K/mgf is the typical
dimensional scale for the velocity. This is chosen to balance
the volume flux with the pressure gradient in Darcy’s law
(equation (3)). Combining (15) and (11) gives a typical
pressure scale across the thermal boundary layer necessary
to drive any prescribed mass flux through the pore spaces of
the lava dome.
[29] Having specified the dimensional scales in the prob-

lem they are substituted into the field equations giving
nondimensional conservation laws for energy, mass, and
momentum. These are

@

@ t̂
1þ e d þ r̂g

� �n o
T̂

h i
þ e

@

@ẑ
d þ r̂g

� �
v̂gT̂

n o
� 1

Pe

@2T̂

@ẑ2
¼ 0;

ð16Þ

@r̂g
@ t̂

þ @

@ẑ
d þ r̂g

� �
v̂g

h i
¼ 0; ð17Þ

and

v̂g ¼ � @p̂g
@ẑg

� b d þ r̂g
� �

; ð18Þ

respectively, where the nondimensional numbers present in
this system of equations are

b ¼
rg
h i

Lg cosa

pg
� 
 ; ð19Þ

e ¼
fcg rg

h i
1� fð Þcrrr

; ð20Þ

corresponding to the ratio of the pressure gradient to the
effect of gravity in Darcy’s law and the ratio of the specific
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heats of magmatic gas to andesite, respectively. A Péclet
number measures the ratio of thermal advection to thermal
diffusion in the lava dome

Pe ¼
vg
� 


L 1� fð Þcrrr
ke

: ð21Þ

[30] The nondimensional surface pressure and tempera-
ture are p̂g(0, t̂) = 0 and T̂ (0, t̂) = T̂ s(̂t) respectively and the
nondimensional surface density is

r̂g 0; t̂ð Þ ¼ � dT̂s t̂ð Þ
Qþ T̂s t̂ð Þ

; ð22Þ

while the temperature satisfies the nondimensional version
of the heat flux boundary condition (5):

@T̂

@ẑ

				
z¼0

¼ �H T̂s

 �

; ð23Þ

where the nondimensional heat flux

H T̂s

 �

¼ B 4T̂s þ
6T̂2

s

Q
þ 4T̂3

s

Q2
þ T̂4

s

Q3

� �
þ CT̂s: ð24Þ

Here B = �ssLTa
3/ke measures the importance of radiative

cooling to a dome and C = ShracaUL/ke measures the
importance of convective (sensible) cooling. Notice, C
depends linearly on the wind speed over the lava dome
surface and Sh, the lava dome surface roughness. This
completes the nondimensionalization of the model, with
typical values of the dimensionless parameters given in
Table 3 for L = 20 m and mg = 3.5 � 10�3 kg s�1 m�2. For
these parameter values, the advective timescale for the
evolution of the model, [vg]/L = 434.6 seconds.

3. Thermal Structure of an Impermeable Lava
Dome

[31] We can consider the evolution of a solid imperme-
able lava dome, which has no void spaces, and hence no
magmatic gas flow. In this case, the energy conservation

equation (16) reduces to the nondimensional classical heat
equation

@T̂

@ t̂
¼ 1

Pe

@2T̂

@ẑ2
: ð25Þ

An equivalent equation coupled to the boundary condition
(equation (23)) was studied by Matthews and Barclay
[2004]. In such a model, cooling continues below observed
values of lava dome surface temperature on a timescale of
days, leading to unrealistic predictions of the full tempera-
ture profile.
[32] Regions on the surface of a lava dome can maintain

temperatures between 200 and 350�C [Dzurisin et al., 1990;
Oppenheimer et al., 1993; Urai, 2000] for several months.
Therefore we shall look at the steady state behavior of
equation (25), in which the temperature T̂ = T̂ (̂z), is a
function of position only and does not vary with time. In
this case the lava dome temperature satisfies

0 ¼ @2T̂

@ẑ2
: ð26Þ

Temperature profiles resulting from equation (26) are linear
functions of position, and yet must also satisfy the boundary
conditions (equation (23)) and T̂ (�1) = 1. This implies the
nondimensional temperature is related to the nondimen-
sional level through

T̂ ¼ 1�H T̂s

 �

ẑþ 1ð Þ; ð27Þ

where the nondimensional surface heat flux H(T̂ s) is given
by equation (24). Here the value of the surface temperature
T̂ s is unknown, but can be found as the smallest positive
root of the quartic polynomial

T̂s ¼ 1�H T̂s

 �

: ð28Þ

[33] The level ~z = �L here marks the transition between
the surface carapace region and the lower isothermal part of
the dome (at 1100 K). Therefore the steady state surface
temperature can be calculated as a function of the carapace
thickness L (Figure 2). Typical measurements of the lava
dome carapace thickness suggest values of L between 10
and 30 m [Iverson, 1990]. However, this purely diffusive
model only predicts physically realistic lava dome surface

Table 3. Values of Nondimensional Numbers in the Model for L = 20 m and mg = 3.5 � 10�3 kg s�1 m�2 a

Symbol Value Nondimensional Number Equations

Q 0.372 ratio of atmospheric temperature to temperature difference
across thermal boundary layer

(13)

d 1.10 ratio of atmospheric density to density difference across
thermal boundary layer

(14)

b 5.31 � 10�4 influence of gravity on the magmatic gas (19)
e 1.16 � 10�4 ratio of magmatic gas specific heat capacity to andesite

specific heat capacity
(20)

Pe 9.19 � 105 magmatic gas Péclet number (21)
B 13.7 coefficient of radiative heat flux in thermal boundary

condition
C 96.4 coefficient of convective heat flux in thermal boundary

condition for a wind speed of 5 m s�1

aThe values of the physical constants contributing to these numbers are given in Tables 1 and 2.
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temperatures above 200�C for values of L less than one
meter. For values of L greater than 5 m, the predicted steady
state surface temperature is less than 100�C regardless of
the wind speed over the dome. This discrepancy illustrates
that equation (25), a purely diffusive model of lava dome
cooling, neglects some physical process which acts to heat
the lava dome carapace. In the next section we show that
thermal advection by the magmatic gas is the missing heat
transfer mechanism.

4. Steady State Thermal Structure of a Porous
Lava Dome With Magmatic Gas Flow

[34] We now seek a model of the thermal structure of a
lava dome in which heat advection in the flux of magmatic
gases through the void spaces is included. Initially, we look
for steady states profiles of T̂ (̂z), v̂g(̂z), p̂g(̂z) and r̂g(̂z). In the
steady state, derivatives with respect to time disappear, so
equations (16), (17), and (18) reduce to

e
@

@ẑ
d þ r̂g

� �
v̂gT̂

n o
¼ 1

Pe

@2T̂

@ẑ2
; ð29Þ

@

@ẑ
d þ r̂g

� �
v̂g

h i
¼ 0; ð30Þ

v̂g ¼ � @p̂g
@ẑ

� b d þ r̂g
� �

; ð31Þ

respectively. Immediately, as a result of the nondimensiona-
lization, the steady state mass conservation (equation (30))
is integrated to give (d + r̂g)v̂g = 1. Hence the steady state
energy conservation (equation (29)) is reduced to an equation
involving only temperature:

e
@T̂

@ẑ
� 1

Pe

@2T̂

@ẑ2
¼ 0: ð32Þ

Temperature profiles generated by this equation are ex-
ponential functions of ẑ and once again they must satisfy the
boundary conditions (equation (23)) and T̂ (�1) = 1. For

notational brevity w � ePe and from equation (32) and the
boundary conditions we find that the steady state temperature
profile is

T̂ ẑð Þ ¼ 1� w�1H T̂s

 �

ewẑ � e�w
 �
; ð33Þ

for ẑ� 0. Notice, as in the purely diffusivemodel, equation (33)
depends on the surface temperature T̂ s. This is given by the
smallest positive root of the quartic equation

T̂s ¼ 1� w�1H T̂s

 �

1� e�wð Þ; ð34Þ

by which the full profile is recovered.
[35] The steady state temperature profile depends

(through Pe) on mg, the mass flux per unit surface area of
lava dome, with the relationship between [vg] and mg being
given by equation (15). For ‘‘standard values’’ of carapace
thickness with L = 20 m, a mass flux mg = 3.5 � 10�3 kg
s�1 m�2, and surface wind speed U = 5 m s�1, the surface
temperature predicted in steady state is 210�C, which is in
excellent agreement with the observed temperature range of
200–350�C [Dzurisin et al., 1990; Oppenheimer et al.,
1993]. Variations in these parameters produce a range of
steady state surface temperatures (and interior profiles).
Typical carapace thicknesses for lava domes have been
measured at 10 to 30 m by Iverson [1990]. The maximum
wind speed experienced around the Soufrière Hills Volcano
dome is up to 35 m s�1, which would occur during the
passage of a strong hurricane. However, we are interested in
the typical steady state profiles through the dome and
therefore we consider the effect of a much slower wind
speed of 5 m s�1, which is typical of wind speeds measured
by a nearby automated weather station [Edmonds et al.,
2003a]. As with the purely diffusive model shown in
Figure 2, increase in wind speed above this value will lower
the steady state surface temperature. The time-dependent
surface temperature variation resulting from wind speed
increases associated with the passage of a hurricane will
be discussed in section 6.1. Variability is also present in the
magmatic gas mass flux per unit surface area of lava dome,
resulting from variation in the total gas mass flux, the size
and surface area of the lava dome, and the effective region
through which gas is emitted. The total gas mass flux of
217 kg s�1 and dome surface area of 494000 m2, reported
by Carn et al. [2004] for Soufrière Hills Volcano on
20 March 2000 corresponds to a spatially uniform mass
flux per unit surface area of 4.4 � 10�4 kg s�1 m�2 (and a
corresponding steady state surface temperature of just
65�C). However, neither the gas flux nor the surface
temperature are uniformly distributed across the surface of
a lava dome, with regions of lava dome cooler than this and
temperature hot spots consistent with values recorded by
Dzurisin et al. [1990] and Oppenheimer et al. [1993].
[36] Figure 3 illustrates the change in the steady state

surface temperature as mg, L and U are varied. An increase
in mg leads to an increase in the predicted steady state
surface temperatures T̂ s. This is due to the increased gas
mass flux, advecting additional thermal energy to the upper
reaches of the lava dome. In the limit mg ! 0, our new
model of the thermal structure of the lava dome carapace
simplifies to the purely diffusive model of an impermeable

Figure 2. Steady state surface temperatures in an
impermeable dome, as a function of carapace thickness L,
for radiative heat fluxes only (U = 0) and radiative and
convective heat fluxes with U = 2, 5, and 10 m s�1.
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